Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Environ Toxicol Chem ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661474

RESUMO

Risk assessment for bees is mainly based on data for honey bees; however, risk assessment is intended to protect all bee species. This raises the question of whether data for honey bees are a good proxy for other bee species. This issue is not new and has resulted in several publications in which the sensitivity of bee species is compared based on the values of the 48-h median lethal dose (LD50) from acute test results. When this approach is used, observed differences in sensitivity may result both from differences in kinetics and from inherent differences in species sensitivity. In addition, the physiology of the bee, like its overall size, the size of the honey stomach (for acute oral tests), and the physical appearance (for acute contact tests) also influences the sensitivity of the bee. The recently introduced Toxicokinetic-Toxicodynamic (TKTD) model that was developed for the interpretation of honey bee tests (Bee General Uniform Threshold Model for Survival [BeeGUTS]) could integrate the results of acute oral tests, acute contact tests, and chronic tests within one consistent framework. We show that the BeeGUTS model can be calibrated and validated for other bee species and also that the honey bee is among the more sensitive bee species. In addition, we found that differences in sensitivity between species are smaller than previously published comparisons based on 48-h LD50 values. The time-dependency of the LD50 and the specifics of the bee physiology are the main causes of the wider variation found in the published literature. Environ Toxicol Chem 2024;00:1-11. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

2.
Integr Environ Assess Manag ; 20(1): 263-278, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37340847

RESUMO

Natural and seminatural habitats of soil living organisms in cultivated landscapes can be subject to unintended exposure by active substances of plant protection products (PPPs) used in adjacent fields. Spray-drift deposition and runoff are considered major exposure routes into such off-field areas. In this work, we develop a model (xOffFieldSoil) and associated scenarios to estimate exposure of off-field soil habitats. The modular model approach consists of components, each addressing a specific aspect of exposure processes, for example, PPP use, drift deposition, runoff generation and filtering, estimation of soil concentrations. The approach is spatiotemporally explicit and operates at scales ranging from local edge-of-field to large landscapes. The outcome can be aggregated and presented to the risk assessor in a way that addresses the dimensions and scales defined in specific protection goals (SPGs). The approach can be used to assess the effect of mitigation options, for example, field margins, in-field buffers, or drift-reducing technology. The presented provisional scenarios start with a schematic edge-of-field situation and extend to real-world landscapes of up to 5 km × 5 km. A case study was conducted for two active substances of different environmental fate characteristics. Results are presented as a collection of percentiles over time and space, as contour plots, and as maps. The results show that exposure patterns of off-field soil organisms are of a complex nature due to spatial and temporal variabilities combined with landscape structure and event-based processes. Our concepts and analysis demonstrate that more realistic exposure data can be meaningfully consolidated to serve in standard-tier risk assessments. The real-world landscape-scale scenarios indicate risk hot-spots that support the identification of efficient risk mitigation. As a next step, the spatiotemporally explicit exposure data can be directly coupled to ecological effect models (e.g., for earthworms or collembola) to conduct risk assessments at biological entity levels as required by SPGs. Integr Environ Assess Manag 2024;20:263-278. © 2023 Applied Analysis Solutions LLC and WSC Scientific GmbH and Bayer AG and The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Ecossistema , Solo , Medição de Risco , Ecotoxicologia , Modelos Teóricos
3.
Artigo em Inglês | MEDLINE | ID: mdl-37814916

RESUMO

Under current European Union regulation, the risks to aquatic organisms must be assessed for uses of plant protection products (PPPs) that may result in exposure to the environment. For herbicidal PPPs, aquatic macrophytes are often the most sensitive taxa. For some herbicidal modes of action, macrophytes may be affected only while they are actively growing. For the risk assessment, it is therefore useful to know whether application timings would result in surface water exposure during periods when aquatic macrophytes are actively growing (therefore potentially resulting in effects). Toxicity endpoints, which are based on studies with active growth, may be overconservative in cases where exposure of PPPs will not co-occur with active macrophyte growth. A comprehensive literature search was performed, using systematic and manual approaches, with the aim of identifying the main active growth period for macrophytes in natural freshwater bodies in climates relevant to the Central and Northern zones of the European Union. The results of the searches were screened initially to identify all potentially relevant references, for which a full evaluation was then performed. Reliability was assessed using the principles of the Klimisch scoring system. As part of the full evaluation, growth periods were identified for each macrophyte species studied. Finally, the extracted growth periods were considered together to determine an overall active growth period for aquatic macrophytes representative of the Central and Northern EU zones. Based on this literature review, the active growth period identified for most aquatic macrophyte species representative of the Central and Northern EU zones is April to September. Relating to the regulatory implication of these results, it may be possible to conclude a low risk for aquatic macrophytes if the predicted surface water exposure period for certain PPPs is demonstrated to be outside the periods of active growth. Integr Environ Assess Manag 2023;00:1-15. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

4.
Environ Toxicol Chem ; 42(8): 1823-1838, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37191367

RESUMO

The use of toxicokinetic-toxicodynamic (TKTD) modeling in regulatory risk assessment of plant protection products is increasingly popular, especially since the 2018 European Food Safety Authority (EFSA) opinion on TKTD modeling announced that several established models are ready for use in risk assessment. With careful adherence to the guidelines laid out by EFSA, we present a stepwise approach to validation and use of the Simple Algae Model Extended (SAM-X) for regulatory submission in Tier 2C. We demonstrate how the use of moving time windows across time-variable exposure profiles can generate thousands of virtual laboratory mimic simulations that seamlessly predict the effects of time-variable exposures across a full exposure profile while maintaining the laboratory conditions of the standard Organisation for Economic Co-operation and Development (OECD) growth inhibition test. Thus, every virtual laboratory test has a duration of 72 h, with OECD medium and constant light and temperature conditions. The only deviation from the standard test setup is the replacement of constant exposure conditions for time-variable concentrations. The present study demonstrates that for simulation of 72-h toxicity tests, the nutrient dynamics in the SAM-X model are not required, and we propose the alternative use of a simplified model version. For risk assessment, in accordance with the EFSA guidelines we use a median exposure profile of 10 as a threshold, meaning that if a time window within the exposure profile causes 50% growth inhibition when magnified by a factor of 10, the threshold will have been exceeded. We present a simplified example for chlorotoluron and isoproturon. The present case study brings to life our proposed framework for TKTD modeling of algae to establish whether a given exposure can be considered to be of low risk. Environ Toxicol Chem 2023;42:1823-1838. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Ecotoxicologia , Plantas , Inocuidade dos Alimentos , Simulação por Computador , Medição de Risco
5.
Environ Toxicol Chem ; 42(8): 1839-1850, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37204212

RESUMO

To assess the effect of plant protection products on pollinator colonies, the higher tier of environmental risk assessment (ERA), for managed honey bee colonies and other pollinators, is in need of a mechanistic effect model. Such models are seen as a promising solution to the shortcomings, which empirical risk assessment can only overcome to a certain degree. A recent assessment of 40 models conducted by the European Food Safety Authority (EFSA) revealed that BEEHAVE is currently the only publicly available mechanistic honey bee model that has the potential to be accepted for ERA purposes. A concern in the use of this model is a lack of model validation against empirical data, spanning field studies conducted in different regions of Europe and covering the variability in colony and environmental conditions. We filled this gap with a BEEHAVE validation study against 66 control colonies of field studies conducted across Germany, Hungary, and the United Kingdom. Our study implements realistic initial colony size and landscape structure to consider foraging options. Overall, the temporal pattern of colony strength is predicted well. Some discrepancies between experimental data and prediction outcomes are explained by assumptions made for model parameterization. Complementary to the recent EFSA study using BEEHAVE, our validation covers a large variability in colony conditions and environmental impacts representing the Northern and Central European Regulatory Zones. Thus we believe that BEEHAVE can be used to serve the development of specific protection goals as well as the development of simulation scenarios for the European Regulatory Zone. Subsequently, the model can be applied as a standard tool for higher tier ERA of managed honey bees using the mechanistic ecotoxicological module for BEEHAVE, BEEHAVEecotox . Environ Toxicol Chem 2023;42:1839-1850. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Meio Ambiente , Inocuidade dos Alimentos , Abelhas , Animais , Europa (Continente) , Simulação por Computador , Alemanha
6.
Environ Int ; 169: 107547, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36179644

RESUMO

Physiologically-based kinetic (PBK) models are effective tools for designing toxicological studies and conducting extrapolations to inform hazard characterization in risk assessment by filling data gaps and defining safe levels of chemicals. In the present work, a generic avian PBK model for male and female birds was developed using PK-Sim and MoBi from the Open Systems Pharmacology Suite (OSPS). The PBK model includes an ovulation model (egg development) to predict concentrations of chemicals in eggs from dietary exposure. The model was parametrized for chicken (Gallus gallus), bobwhite quail (Colinus virginianus) and mallard duck (Anas platyrhynchos) and was tested with nine chemicals for which in vivo studies were available. Time-concentration profiles of chemicals reaching tissues and egg compartment were simulated and compared to in vivo data. The overall accuracy of the PBK model predictions across the analyzed chemicals was good. Model simulations were found to be in the range of 22-79% within a 3-fold and 41-89% were within 10- fold deviation of the in vivo observed data. However, for some compounds scarcity of in-vivo data and inconsistencies between published studies allowed only a limited goodness of fit evaluation. The generic avian PBK model was developed following a "best practice" workflow describing how to build a PBK model for novel species. The credibility and reproducibility of the avian PBK models were scored by evaluation according to the available guidance documents from WHO (2010), and OECD (2021), to increase applicability, confidence and acceptance of these in silico models in chemical risk assessment.


Assuntos
Galinhas , Modelos Biológicos , Animais , Simulação por Computador , Patos , Feminino , Cinética , Masculino , Reprodutibilidade dos Testes
7.
Environ Toxicol Chem ; 41(11): 2870-2882, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36040132

RESUMO

Mechanistic effect models are powerful tools for extrapolating from laboratory studies to field conditions. For bees, several good models are available that can simulate colony dynamics. Controlled and reliable experimental systems are also available to estimate the inherent toxicity of pesticides to individuals. However, there is currently no systematic and mechanistic way of linking the output of experimental ecotoxicological testing to bee models for bee risk assessment. We introduce an ecotoxicological module that mechanistically links exposure with the hazard profile of a pesticide for individual honeybees so that colony effects emerge. This mechanistic link allows the translation of results from standard laboratory studies to relevant parameters and processes for simulating bee colony dynamics. The module was integrated into the state-of-the-art honeybee model BEEHAVE. For the integration, BEEHAVE was adapted to mechanistically link the exposure and effects on different cohorts to colony dynamics. The BEEHAVEecotox model was tested against semifield (tunnel) studies, which were deemed the best study type to test whether BEEHAVEecotox predicted realistic effect sizes under controlled conditions. Two pesticides used as toxic standards were chosen for this validation to represent two different modes of action: acute mortality of foragers and chronic brood effects. The ecotoxicological module was able to predict effect sizes in the tunnel studies based on information from standard laboratory tests. In conclusion, the BEEHAVEecotox model is an excellent tool to be used for honeybee risk assessment, interpretation of field and semifield studies, and exploring the efficiency of different mitigation measures. The principles for exposure and effect modules are portable and could be used for any well-constructed honeybee model. Environ Toxicol Chem 2022;41:2870-2882. © 2022 Bayer AG & Sygenta, et al. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Praguicidas , Abelhas , Animais , Praguicidas/toxicidade , Modelos Teóricos , Medição de Risco
8.
Environ Toxicol Chem ; 41(9): 2193-2201, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35770718

RESUMO

Understanding the survival of honey bees after pesticide exposure is key for environmental risk assessment. Currently, effects on adult honey bees are assessed by Organisation for Economic Co-operation and Development standardized guidelines, such as the acute and chronic oral exposure and acute contact exposure tests. The three different tests are interpreted individually, without consideration that the same compound is investigated in the same species, which should allow for an integrative assessment. In the present study we developed, calibrated, and validated a toxicokinetic-toxicodynamic model with 17 existing data sets on acute and chronic effects for honey bees. The model is based on the generalized unified threshold model for survival (GUTS), which is able to integrate the different exposure regimes, taking into account the physiology of the honey bee: the BeeGUTS model. The model is able to accurately describe the effects over time for all three exposure routes combined within one consistent framework. The model can also be used as a validity check for toxicity values used in honey bee risk assessment and to conduct effect assessments for real-life exposure scenarios. This new integrative approach, moving from single-point estimates of toxicity and exposure to a holistic link between exposure and effect, will allow for a higher confidence of honey bee toxicity assessment in the future. Environ Toxicol Chem 2022;41:2193-2201. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Praguicidas , Animais , Abelhas , Praguicidas/toxicidade , Medição de Risco , Toxicocinética
9.
Front Physiol ; 13: 858283, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464078

RESUMO

Physiologically based kinetic (PBK) models are a promising tool for xenobiotic environmental risk assessment that could reduce animal testing by predicting in vivo exposure. PBK models for birds could further our understanding of species-specific sensitivities to xenobiotics, but would require species-specific parameterization. To this end, we summarize multiple major morphometric and physiological characteristics in chickens, particularly laying hens (Gallus gallus) and mallards (Anas platyrhynchos) in a meta-analysis of published data. Where such data did not exist, data are substituted from domesticated ducks (Anas platyrhynchos) and, in their absence, from chickens. The distribution of water between intracellular, extracellular, and plasma is similar in laying hens and mallards. Similarly, the lengths of the components of the small intestine (duodenum, jejunum, and ileum) are similar in chickens and mallards. Moreover, not only are the gastrointestinal absorptive areas similar in mallard and chickens but also they are similar to those in mammals when expressed on a log basis and compared to log body weight. In contrast, the following are much lower in laying hens than mallards: cardiac output (CO), hematocrit (Hct), and blood hemoglobin. There are shifts in ovary weight (increased), oviduct weight (increased), and plasma/serum concentrations of vitellogenin and triglyceride between laying hens and sexually immature females. In contrast, reproductive state does not affect the relative weights of the liver, kidneys, spleen, and gizzard.

10.
Front Physiol ; 13: 858386, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35450159

RESUMO

Physiologically based kinetic (PBK) models facilitate chemical risk assessment by predicting in vivo exposure while reducing the need for animal testing. PBK models for mammals have seen significant progress, which has yet to be achieved for avian systems. Here, we quantitatively compare physiological, metabolic and anatomical characteristics between birds and mammals, with the aim of facilitating bird PBK model development. For some characteristics, there is considerable complementarity between avian and mammalian species with identical values for the following: blood hemoglobin and hemoglobin concentrations per unit erythrocyte volume together with relative weights of the liver, heart, and lungs. There are also systematic differences for some major characteristics between avian and mammalian species including erythrocyte volume, plasma concentrations of albumin, total protein and triglyceride together with liver cell size and relative weights of the kidney, spleen, and ovary. There are also major differences between characteristics between sexually mature and sexually immature female birds. For example, the relative weights of the ovary and oviduct are greater in sexually mature females compared to immature birds as are the plasma concentrations of triglyceride and vitellogenin. Both these sets of differences reflect the genetic "blue print" inherited from ancestral archosaurs such as the production of large eggs with yolk filled oocytes surrounded by egg white proteins, membranes and a calciferous shell together with adaptions for flight in birds or ancestrally in flightless birds.

11.
Environ Toxicol Chem ; 41(7): 1778-1787, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35435995

RESUMO

In pesticide risk assessment, regulatory acceptable concentrations for surface water bodies (RACsw,ch) are used that are derived from standard studies with continuous exposure of organisms to a test compound for days or months. These RACsw,ch are compared with the maximum tested concentration of more realistic exposure scenarios. However, the actual exposure duration could be notably shorter (e.g., hours) than the standard study, which intentionally leads to an overly conservative Tier 1 risk assessment. This discrepancy can be addressed in a risk assessment using the time-weighted average concentration (TWAc). In Europe, the applicability of TWAc for a particular risk assessment is evaluated using a complex decision scheme, which has been controversial; thus we propose an alternative approach: We used TWAc-check (which is based on the idea that the TWAc concept is just a model for aquatic risk assessment) to test whether the use of a TWAc is appropriate for such assessment. The TWAc-check method works by using predicted-measured diagrams to test how well the TWAc model predicts experimental data from peak exposure experiments. Overestimated effects are accepted because the conservatism of the TWAc model is prioritized over the goodness of fit. We illustrate the applicability of TWAc-check by applying it to various data sets for different species and substances. We demonstrate that the applicability is case dependent. Specifically, TWAc-check correctly identifies that the use of TWAc is not appropriate for early onset of effects or delayed effects. The proposed concept shows that the time window is a decisive factor as to whether or not the model is acceptable and that this concept can be used as a potential refinement option prior to the use of toxicokinetic-toxicodynamic models. Environ Toxicol Chem 2022;41:1778-1787. © 2022 Bayer AG. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Praguicidas , Poluentes Químicos da Água , Ecotoxicologia , Europa (Continente) , Medição de Risco/métodos , Poluentes Químicos da Água/toxicidade
12.
Environ Toxicol Chem ; 40(6): 1706-1712, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33629777

RESUMO

Ecotoxicological profiles of the 3 insecticides imidacloprid, thiacloprid, and flupyradifurone in terms of acute and chronic effects were analyzed in Chironomus riparius. Toxicokinetic-toxicodynamic modeling revealed that chironomids would die from starvation as a result of prolonged feeding inhibition under chronic exposures. The starvation effect is an indirect cause for mortality, which, for the neonicotinoids, adds to the direct/acute mortality, although the results suggests that this additional effect is not relevant for flupyradifurone. Environ Toxicol Chem 2021;40:1706-1712. © 2021 Bayer Inc. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Chironomidae , Inseticidas , Poluentes Químicos da Água , Animais , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Nitrocompostos , Toxicocinética , Poluentes Químicos da Água/farmacologia
13.
Arch Toxicol ; 94(11): 3847-3860, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33033842

RESUMO

Physiology-based pharmacokinetic and toxicokinetic (PBPK/TK) models allow us to simulate the concentration of xenobiotica in the plasma and different tissues of an organism. PBPK/TK models are therefore routinely used in many fields of life sciences to simulate the physiological concentration of exogenous compounds in plasma and tissues. The application of PBTK models in ecotoxicology, however, is currently hampered by the limited availability of models for focal species. Here, we present a best practice workflow that describes how to build PBTK models for novel species. To this end, we extrapolated eight previously established rabbit models for several drugs to six additional mammalian species (human, beagle, rat, monkey, mouse, and minipig). We used established PBTK models for these species to account for the species-specific physiology. The parameter sensitivity in the resulting 56 PBTK models was systematically assessed to rank the relevance of the parameters on overall model performance. Interestingly, more than 80% of the 609 considered model parameters showed a negligible sensitivity throughout all models. Only approximately 5% of all parameters had a high sensitivity in at least one of the PBTK models. This approach allowed us to rank the relevance of the various parameters on overall model performance. We used this information to formulate a best practice guideline for the efficient development of PBTK models for novel animal species. We believe that the workflow proposed in this study will significantly support the development of PBTK models for new animal species in the future.


Assuntos
Avaliação de Medicamentos/métodos , Modelos Biológicos , Farmacocinética , Guias de Prática Clínica como Assunto , Animais , Cães , Haplorrinos , Camundongos , Coelhos , Ratos , Medição de Risco , Especificidade da Espécie , Suínos , Fluxo de Trabalho , Xenobióticos
14.
Sci Total Environ ; 722: 137673, 2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32208236

RESUMO

The aim of the environmental risk assessment of chemicals is the prevention of unacceptable adverse effects on the environment. Therefore, the risk assessment for in-soil organisms, such as earthworms, is based on two key elements: the exposure assessment and the effect assessment. In the current risk assessment scheme, these two elements are not linked. While for the exposure assessment, advanced exposure models can take the spatial and temporal scale of substances into account, the effect assessment in the lower tiers considers only a limited temporal and spatial variability. However, for soil organisms, such as earthworms, those scales play a significant role as species move through the soil in response to environmental factors. To overcome this gap, we propose a conceptual integration of pesticide exposure, ecology, and toxicological effects on earthworms using a modular modeling approach. An essential part of this modular approach is the environment module, which utilizes exposure models to provide spatially and temporally explicit information on environmental variables (e.g., temperature, moisture, organic matter content) and chemical concentrations. The behavior module uses this information and simulates the feeding and movement of different earthworm species using a trait-based approach. The resulting exposure can be processed by a toxicokinetic-toxicodynamic (TKTD) module. TKTD models are particularly suitable to make effect predictions for time-variable exposure situations as they include the processes of uptake, elimination, internal distribution, and biotransformation of chemicals and link the internal concentration to an effect at the organism level. The population module incorporates existing population models of different earthworm species. The modular approach is illustrated using a case study with an insecticide. Our results emphasize that using a modular model approach will facilitate the integration of exposure and effects and thus enhance the risk assessment of soil organisms.


Assuntos
Oligoquetos , Animais , Inseticidas , Praguicidas , Solo , Poluentes do Solo , Toxicocinética
15.
PLoS One ; 15(3): e0230012, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32168318

RESUMO

Plants located adjacent to agricultural fields are important for maintaining biodiversity in semi-natural landscapes. To avoid undesired impacts on these plants due to herbicide application on the arable fields, regulatory risk assessments are conducted prior to registration to ensure proposed uses of plant protection products do not present an unacceptable risk. The current risk assessment approach for these non-target terrestrial plants (NTTPs) examines impacts at the individual-level as a surrogate approach for protecting the plant community due to the inherent difficulties of directly assessing population or community level impacts. However, modelling approaches are suitable higher tier tools to upscale individual-level effects to community level. IBC-grass is a sophisticated plant community model, which has already been applied in several studies. However, as it is a console application software, it was not deemed sufficiently user-friendly for risk managers and assessors to be conveniently operated without prior expertise in ecological models. Here, we present a user-friendly and open source graphical user interface (GUI) for the application of IBC-grass in regulatory herbicide risk assessment. It facilitates the use of the plant community model for predicting long-term impacts of herbicide applications on NTTP communities. The GUI offers two options to integrate herbicide impacts: (1) dose responses based on current standard experiments (acc. to testing guidelines) and (2) based on specific effect intensities. Both options represent suitable higher tier options for future risk assessments of NTTPs as well as for research on the ecological relevance of effects.


Assuntos
Gráficos por Computador , Herbicidas/toxicidade , Modelos Estatísticos , Medição de Risco/métodos , Interface Usuário-Computador , Monitoramento Ambiental
16.
Environ Toxicol Chem ; 38(11): 2535-2545, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31343774

RESUMO

A lack of standard and internationally agreed procedures for higher-tier risk assessment of plant protection products for bees makes coherent availability of data, their interpretation, and their use for risk assessment challenging. Focus has been given to the development of modeling approaches, which in the future could fill this gap. The BEEHAVE model, and its submodels, is the first model framework attempting to link 2 processes vital for the assessment of bee colonies: the within-hive dynamics for honey bee colonies and bee foraging in heterogeneous and dynamic landscapes. We use empirical data from a honey bee field study to conduct a model evaluation using the control data set. Simultaneously, we are testing several model setups for the interlinkage between the within-hive dynamics and the landscape foraging module. Overall, predictions of beehive dynamics fit observations made in the field. This result underpins the European Food Safety Authority's evaluation of the BEEHAVE model that the most important in-hive dynamics are represented and correctly implemented. We show that starting conditions of a colony drive the simulated colony dynamics almost entirely within the first few weeks, whereas the impact is increasingly substituted by the impact of foraging activity. Common among field studies is that data availability for hive observations and landscape characterizations is focused on the proportionally short exposure phase (i.e., the phase where colony starting conditions drive the colony dynamics) in comparison to the postexposure phase that lasts several months. It is vital to redistribute experimental efforts toward more equal data aquisition throughout the experiment to assess the suitability of using BEEHAVE for the prediction of bee colony overwintering survival. Environ Toxicol Chem 2019;38:2535-2545. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Assuntos
Abelhas/fisiologia , Modelos Biológicos , Animais , Simulação por Computador , Ecossistema , Mel , Medição de Risco
17.
Integr Environ Assess Manag ; 15(1): 29-39, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30117277

RESUMO

Risk assessments for plant protection products and their active ingredients that are based on standard laboratory tests performed under constant exposure conditions may result in an overestimation of risks because exposure in the environment is often characterized by a few short peaks. Here, the General Unified Threshold Model of Survival (GUTS) was used to conduct a refined risk assessment for the herbicide tembotrione and its effects on the marine invertebrate Americamysis bahia, for which the standard chronic effect assessment failed. The GUTS model was first calibrated with time-to-effect and concentration-response data from 2 independent acute experiments with A. bahia. Model parameters for both toxicodynamic assumptions of stochastic death (SD) and individual tolerance (IT) were estimated with the reduced GUTS model (GUTS-RED) using the scaled internal concentration as a dose metric. Both the calibrated GUTS-RED-SD and GUTS-RED-IT models described survival dynamics well. Model validation using datasets of 2 independent chronic tests yielded robust predictions of long-term toxicity of tembotrione on A. bahia, with GUTS-RED-IT being more reliable than GUTS-RED-SD. The validated model was subsequently used to predict survival from time-variable exposure profiles, as derived from the FOrum for Co-ordination of pesticide fate models and their USe (FOCUS). Because ecotoxicological independence of peaks had not been empirically verified, the link between exposure and effects was assessed with complete exposure profiles. Effect thresholds resulting from different peak exposure concentrations and durations were determined with GUTS and directly compared with the exposure concentrations from the FOCUS surface water scenarios. The derived values were higher than the predicted FOCUS critical concentrations. Additionally, comparing the areas under the curve (AUCs) derived with GUTS for multiple peak exposure profiles to those from FOCUS revealed significant additional safety margins, demonstrating that only unrealistically high exposure concentrations would produce significant effects. In conclusion, no unacceptable effects of tembotrione on aquatic invertebrates under realistic environmental exposure conditions are expected. Integr Environ Assess Manag 2019;15:29-39. © 2018 SETAC.


Assuntos
Crustáceos/fisiologia , Monitoramento Ambiental/métodos , Herbicidas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Brasil , Medição de Risco , Testes de Toxicidade
18.
Environ Sci Eur ; 30(1): 44, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30524918

RESUMO

BACKGROUND: Semi-natural plant communities such as field boundaries play an important ecological role in agricultural landscapes, e.g., provision of refuge for plant and other species, food web support or habitat connectivity. To prevent undesired effects of herbicide applications on these communities and their structure, the registration and application are regulated by risk assessment schemes in many industrialized countries. Standardized individual-level greenhouse experiments are conducted on a selection of crop and wild plant species to characterize the effects of herbicide loads potentially reaching off-field areas on non-target plants. Uncertainties regarding the protectiveness of such approaches to risk assessment might be addressed by assessment factors that are often under discussion. As an alternative approach, plant community models can be used to predict potential effects on plant communities of interest based on extrapolation of the individual-level effects measured in the standardized greenhouse experiments. In this study, we analyzed the reliability and adequacy of the plant community model IBC-grass (individual-based plant community model for grasslands) by comparing model predictions with empirically measured effects at the plant community level. RESULTS: We showed that the effects predicted by the model IBC-grass were in accordance with the empirical data. Based on the species-specific dose responses (calculated from empirical effects in monocultures measured 4 weeks after application), the model was able to realistically predict short-term herbicide impacts on communities when compared to empirical data. CONCLUSION: The results presented in this study demonstrate an approach how the current standard greenhouse experiments-measuring herbicide impacts on individual-level-can be coupled with the model IBC-grass to estimate effects on plant community level. In this way, it can be used as a tool in ecological risk assessment.

19.
Environ Sci Eur ; 30(1): 36, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30294515

RESUMO

BACKGROUND: Available literature and regulatory studies show that the severity of effects of beta-cyfluthrin (a synthetic pyrethroid) on fish is influenced by the magnitude and duration of exposure. To investigate how the exposure pattern to beta-cyfluthrin (constant vs peak) may influence the response of the fish, we used a mechanistic effect model to predict the survival and growth of the rainbow trout over its early life stages (i.e. egg, alevin and swim-up fry). We parameterized a toxicokinetic-toxicodynamic (TKTD) module in combination with a dynamic energy budget model enabling us to describe uptake and elimination, as well as to predict the threshold concentration for survival and sublethal effects (feeding behaviour and growth). This effect model was calibrated using data from an early life stage experiment where trout was exposed to a constant concentration of cyfluthrin. The model was validated by comparing model predictions to independent data from a pulsed-exposure study with early life stages of rainbow trout. RESULTS: The co-occurrence of effects on behaviour and growth raised the possibility that these were interrelated, i.e. impairment of feeding behaviour may have led to reduced food intake and slower growth. We, therefore, included 'effect on feeding' as mode of action in the TKTD module. At higher concentrations, the constant exposure led to death. The model was able to adequately capture this effect pattern in the calibration. The model was able to adequately predict the response of fish eggs, alevins and swim-up fry, from both the qualitative (response pattern) and quantitative points of view. CONCLUSIONS: Since the model was successfully validated, it can be used to predict survival and growth of early life stages under various realistic time-variable exposure profiles (e.g. profiles from FOCUS surface water modelling) of beta-cyfluthrin.

20.
PLoS One ; 13(3): e0194294, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29561908

RESUMO

The environmental fates of pharmaceuticals and the effects of crop protection products on non-target species are subjects that are undergoing intense review. Since measuring the concentrations and effects of xenobiotics on all affected species under all conceivable scenarios is not feasible, standard laboratory animals such as rabbits are tested, and the observed adverse effects are translated to focal species for environmental risk assessments. In that respect, mathematical modelling is becoming increasingly important for evaluating the consequences of pesticides in untested scenarios. In particular, physiologically based pharmacokinetic/toxicokinetic (PBPK/TK) modelling is a well-established methodology used to predict tissue concentrations based on the absorption, distribution, metabolism and excretion of drugs and toxicants. In the present work, a rabbit PBPK/TK model is developed and evaluated with data available from the literature. The model predictions include scenarios of both intravenous (i.v.) and oral (p.o.) administration of small and large compounds. The presented rabbit PBPK/TK model predicts the pharmacokinetics (Cmax, AUC) of the tested compounds with an average 1.7-fold error. This result indicates a good predictive capacity of the model, which enables its use for risk assessment modelling and simulations.


Assuntos
Modelos Biológicos , Farmacocinética , Toxicocinética , Algoritmos , Animais , Área Sob a Curva , Simulação por Computador , Inulina/farmacocinética , Inulina/toxicidade , Coelhos , Reprodutibilidade dos Testes , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA